← Back to comparisons
RANA vs MetaGPT
MetaGPT pioneered multi-agent frameworks but requires Python and complex OOP patterns. RANA brings the same power to TypeScript with a simpler API.
TypeScript
First-class Support
4
Orchestration Patterns
Built-in
State Management
Simpler
Learning Curve
Multi-Agent Team Setup
MetaGPT18 lines
from metagpt.roles import ProductManager, Architect, Engineer
from metagpt.team import Team
from metagpt.config import Config
config = Config.default()
team = Team()
team.hire([
ProductManager(),
Architect(),
Engineer(),
])
team.invest(investment=10.0)
team.run_project(idea="Build a weather app")
# Complex setup with roles, actions, and memories
# Requires understanding MetaGPT's role-based architectureRANA21 lines
import { createTeam, createOrchestrator } from '@rana/agents';
const orchestrator = createOrchestrator();
const { execute } = createTeam({
coordinator: {
id: 'pm',
name: 'Product Manager',
capabilities: ['planning', 'coordination'],
},
workers: [
{ id: 'architect', name: 'Architect', capabilities: ['design'] },
{ id: 'engineer', name: 'Engineer', capabilities: ['code'] },
],
});
const result = await execute({
taskId: 'weather-app',
description: 'Build a weather app',
input: { idea: 'weather app with forecasts' },
});Agent Communication
MetaGPT24 lines
from metagpt.roles import Role
from metagpt.actions import Action
from metagpt.messages import Message
class CustomAction(Action):
name: str = "CustomAction"
async def run(self, messages: list[Message]) -> str:
# Process messages
return "result"
class CustomRole(Role):
name: str = "CustomRole"
profile: str = "A custom agent"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.set_actions([CustomAction()])
async def _act(self) -> Message:
result = await self.todo.run(self.rc.memory.get())
return Message(content=result, role=self.profile)
# Requires understanding OOP patterns and async executionRANA23 lines
import { AgentOrchestrator } from '@rana/agents';
const orchestrator = new AgentOrchestrator();
// Register agents
orchestrator.registerAgent({
id: 'custom-agent',
name: 'Custom Agent',
capabilities: ['custom-task'],
});
// Simple message passing
await orchestrator.sendMessage('custom-agent', {
type: 'task',
content: { action: 'process', data: input },
});
// Listen for responses
orchestrator.on((event) => {
if (event.type === 'message') {
console.log('Agent response:', event.message);
}
});Shared State Management
MetaGPT21 lines
from metagpt.environment import Environment
from metagpt.memory import Memory, LongTermMemory
# MetaGPT uses environment and memory classes
env = Environment()
# Memory is tied to roles
class MyRole(Role):
def __init__(self):
super().__init__()
self.rc.memory = Memory()
self.rc.long_term_memory = LongTermMemory()
async def _observe(self):
# Observe messages from environment
await super()._observe()
async def _think(self):
# Access memory for context
memories = self.rc.memory.get()
# Complex memory managementRANA22 lines
import { SharedStateManager } from '@rana/agents';
const stateManager = new SharedStateManager({ taskCount: 0 });
// Simple state updates
await stateManager.update({
type: 'set',
key: 'currentTask',
value: 'weather-app',
});
// Transactions for consistency
await stateManager.transaction('tx-1', async (state) => {
state.taskCount++;
state.lastUpdated = Date.now();
return state;
});
// Subscribe to changes
stateManager.subscribe((state) => {
console.log('State changed:', state);
});Consensus & Voting
MetaGPT16 lines
# MetaGPT doesn't have built-in consensus mechanisms
# You would need to implement custom logic:
class ConsensusRole(Role):
async def vote(self, proposal):
# Manual implementation needed
pass
# Coordinate multiple roles manually
results = []
for role in team.roles:
vote = await role.vote(proposal)
results.append(vote)
# Count votes manually
consensus = sum(results) > len(results) / 2RANA19 lines
import { createConsensusGroup } from '@rana/agents';
const { vote } = createConsensusGroup([
{ id: 'reviewer-1', name: 'Reviewer 1', capabilities: ['review'] },
{ id: 'reviewer-2', name: 'Reviewer 2', capabilities: ['review'] },
{ id: 'reviewer-3', name: 'Reviewer 3', capabilities: ['review'] },
], {
quorum: 2,
votingStrategy: 'majority',
});
const result = await vote({
taskId: 'approve-design',
description: 'Approve the weather app design',
input: { design: designDoc },
});
console.log(result.consensusReached); // true/false
console.log(result.votes); // { approve: 2, reject: 1 }Feature Comparison
| Feature | RANA | MetaGPT |
|---|---|---|
| Primary Language | TypeScript | Python |
| Multi-agent orchestration | ✓ | ✓ |
| Built-in consensus voting | ✓ | ✗ |
| Transactional state | ✓ | ✗ |
| Event system | ✓ | Limited |
| Web deployment | Native | FastAPI |
| Learning curve | Easy | Steep |
When to Choose RANA
Choose RANA if you:
- ✓Build with TypeScript/JavaScript
- ✓Need simpler multi-agent patterns
- ✓Want built-in consensus voting
- ✓Prefer functional over OOP
- ✓Deploy to web platforms (Vercel, etc.)
Choose MetaGPT if you:
- •Need Python ecosystem integration
- •Want predefined software team roles
- •Prefer OOP architecture patterns
- •Have existing Python AI infrastructure