← Back to comparisons
RANA vs LlamaIndex
LlamaIndex pioneered RAG frameworks. RANA builds on those patterns with a simpler API, TypeScript-first design, and production features.
70%
Less Code
100%
TypeScript
Built-in
Cost Tracking
~50KB
Bundle Size
| Feature | LlamaIndex | RANA |
|---|---|---|
RAG Pipeline Both provide RAG capabilities | ✓ | ✓ |
Vector Storage Both support vector stores | ✓ | ✓ |
Document Loaders Both support multiple document types | ✓ | ✓ |
TypeScript Native RANA is TypeScript-first | ✗ | ✓ |
Cost Tracking RANA tracks costs automatically | ✗ | ✓ |
Built-in Testing RANA has @rana/testing | ✗ | ✓ |
Security Features RANA includes PII detection, injection prevention | ✗ | ✓ |
Multi-Provider Both support multiple providers | ✓ | ✓ |
Observability RANA has built-in tracing | ✗ | ✓ |
Agent Framework Both support agent patterns | ✓ | ✓ |
Basic RAG Setup
LlamaIndex26 lines
import { Document, VectorStoreIndex, serviceContextFromDefaults } from "llamaindex";
// Create documents
const documents = [
new Document({ text: "Your document content here..." }),
new Document({ text: "Another document..." }),
];
// Create service context
const serviceContext = serviceContextFromDefaults({
chunkSize: 512,
chunkOverlap: 50,
});
// Create index
const index = await VectorStoreIndex.fromDocuments(
documents,
{ serviceContext }
);
// Create query engine
const queryEngine = index.asQueryEngine();
// Query
const response = await queryEngine.query("Your question here");
console.log(response.toString());RANA13 lines
import { createRana } from '@rana/core';
import { createRAG } from '@rana/rag';
const rana = createRana();
const rag = createRAG({ rana });
await rag.ingest([
"Your document content here...",
"Another document..."
]);
const response = await rag.query("Your question here");
console.log(response.content);Custom Embeddings
LlamaIndex22 lines
import {
Document,
VectorStoreIndex,
OpenAIEmbedding,
serviceContextFromDefaults
} from "llamaindex";
const embedModel = new OpenAIEmbedding({
model: "text-embedding-3-small",
dimensions: 1536,
});
const serviceContext = serviceContextFromDefaults({
embedModel,
});
const documents = [new Document({ text: content })];
const index = await VectorStoreIndex.fromDocuments(
documents,
{ serviceContext }
);RANA13 lines
import { createRana } from '@rana/core';
import { createRAG } from '@rana/rag';
const rana = createRana();
const rag = createRAG({
rana,
embedding: {
model: 'text-embedding-3-small',
dimensions: 1536,
},
});
await rag.ingest(content);Streaming Responses
LlamaIndex25 lines
import {
Document,
VectorStoreIndex,
OpenAI,
serviceContextFromDefaults
} from "llamaindex";
const llm = new OpenAI({
model: "gpt-4",
temperature: 0.7,
});
const serviceContext = serviceContextFromDefaults({ llm });
const index = await VectorStoreIndex.fromDocuments(docs, { serviceContext });
const queryEngine = index.asQueryEngine();
const stream = await queryEngine.query(
"Your question",
{ streaming: true }
);
for await (const chunk of stream) {
process.stdout.write(chunk.response);
}RANA11 lines
import { createRana } from '@rana/core';
import { createRAG } from '@rana/rag';
const rana = createRana({ model: 'gpt-4' });
const rag = createRAG({ rana });
await rag.ingest(docs);
for await (const chunk of rag.queryStream("Your question")) {
process.stdout.write(chunk);
}When to Choose Each
Choose RANA if you:
- ✓Want simpler, more readable RAG code
- ✓Need TypeScript-first with great type inference
- ✓Want built-in cost tracking and security
- ✓Prefer convention over configuration
Choose LlamaIndex if you:
- •Need Python as your primary language
- •Have existing LlamaIndex integrations
- •Need highly specialized index types