← Back to comparisons
RANA vs CrewAI
CrewAI made multi-agent systems accessible but is Python-only. RANA brings similar patterns to TypeScript with better parallel execution and state management.
True
Parallel Execution
ACID
State Transactions
Simple
Tool Creation
Web
Native Deployment
Creating a Crew
CrewAI43 lines
from crewai import Agent, Task, Crew, Process
# Define agents
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments',
backstory='You are a senior researcher...',
verbose=True,
allow_delegation=False,
tools=[SearchTool(), WebScraperTool()]
)
writer = Agent(
role='Content Writer',
goal='Create engaging content',
backstory='You are a skilled writer...',
verbose=True,
allow_delegation=True
)
# Define tasks
research_task = Task(
description='Research the latest AI trends',
expected_output='A comprehensive report',
agent=researcher
)
write_task = Task(
description='Write an article based on research',
expected_output='A blog article',
agent=writer,
context=[research_task]
)
# Create and run crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff()RANA20 lines
import { createPipeline } from '@rana/agents';
const { orchestrator, execute } = createPipeline([
{
id: 'researcher',
name: 'Research Analyst',
capabilities: ['research', 'summarize'],
},
{
id: 'writer',
name: 'Content Writer',
capabilities: ['write', 'edit'],
},
]);
const result = await execute({
taskId: 'ai-trends-article',
description: 'Research AI trends and write an article',
input: { topic: 'AI trends' },
});Parallel Execution
CrewAI20 lines
from crewai import Crew, Process
# Define multiple agents for parallel work
agent1 = Agent(role='Analyst 1', ...)
agent2 = Agent(role='Analyst 2', ...)
agent3 = Agent(role='Analyst 3', ...)
task1 = Task(description='Analyze market A', agent=agent1)
task2 = Task(description='Analyze market B', agent=agent2)
task3 = Task(description='Analyze market C', agent=agent3)
# CrewAI hierarchical process
crew = Crew(
agents=[agent1, agent2, agent3],
tasks=[task1, task2, task3],
process=Process.hierarchical, # Not truly parallel
manager_llm=ChatOpenAI()
)
result = crew.kickoff()RANA16 lines
import { createWorkerPool } from '@rana/agents';
const { execute } = createWorkerPool([
{ id: 'analyst-1', name: 'Analyst 1', capabilities: ['analyze'] },
{ id: 'analyst-2', name: 'Analyst 2', capabilities: ['analyze'] },
{ id: 'analyst-3', name: 'Analyst 3', capabilities: ['analyze'] },
]);
// True parallel execution
const results = await execute([
{ taskId: 'market-a', description: 'Analyze market A', input: {} },
{ taskId: 'market-b', description: 'Analyze market B', input: {} },
{ taskId: 'market-c', description: 'Analyze market C', input: {} },
]);
// results = [resultA, resultB, resultC] - all executed in parallelTool Integration
CrewAI17 lines
from crewai import Agent
from crewai_tools import SerperDevTool, WebsiteSearchTool
# Tools require separate crewai_tools package
search_tool = SerperDevTool()
web_tool = WebsiteSearchTool()
agent = Agent(
role='Researcher',
goal='Find information',
backstory='...',
tools=[search_tool, web_tool],
verbose=True
)
# Tool execution is handled by the agent
# Custom tools require specific interface implementationRANA27 lines
import { createTool, createAgent } from '@rana/agents';
// Simple tool creation
const searchTool = createTool({
name: 'search',
description: 'Search the web',
parameters: { query: { type: 'string' } },
handler: async ({ query }) => {
// Your search implementation
return results;
},
});
const webTool = createTool({
name: 'fetch_page',
description: 'Fetch a webpage',
parameters: { url: { type: 'string' } },
handler: async ({ url }) => {
const res = await fetch(url);
return res.text();
},
});
// Use with any agent
const agent = createAgent({
tools: [searchTool, webTool],
});Memory & Context
CrewAI15 lines
from crewai import Agent
from crewai.memory import LongTermMemory, ShortTermMemory
# Memory configuration
agent = Agent(
role='Assistant',
goal='Help users',
backstory='...',
memory=True, # Enable memory
long_term_memory=LongTermMemory(),
short_term_memory=ShortTermMemory()
)
# Memory is implicit and managed internally
# Limited control over memory operationsRANA25 lines
import { SharedStateManager, createOrchestrator } from '@rana/agents';
const orchestrator = createOrchestrator({
conversationHistory: [],
userPreferences: {},
});
// Explicit state management
await orchestrator.updateState({
type: 'append',
key: 'conversationHistory',
value: { role: 'user', content: 'Hello' },
});
// Transaction support for complex updates
await orchestrator.transaction('update-context', async (state) => {
state.conversationHistory.push(newMessage);
state.lastUpdated = Date.now();
return state;
});
// Subscribe to state changes
orchestrator.subscribeToState((state) => {
console.log('Memory updated:', state);
});Feature Comparison
| Feature | RANA | CrewAI |
|---|---|---|
| Primary Language | TypeScript | Python |
| True parallel execution | ✓ | Limited |
| Sequential pipeline | ✓ | ✓ |
| Hierarchical teams | ✓ | ✓ |
| Consensus voting | ✓ | ✗ |
| Transactional state | ✓ | ✗ |
| Custom tool creation | Simple | Separate pkg |
| Event system | ✓ | Callbacks |
When to Choose RANA
Choose RANA if you:
- ✓Build with TypeScript/JavaScript
- ✓Need true parallel task execution
- ✓Want transactional state management
- ✓Need consensus-based decisions
- ✓Deploy to serverless/edge
Choose CrewAI if you:
- •Prefer Python ecosystem
- •Like role-based agent personas
- •Need crewai_tools integrations
- •Have existing Python infrastructure